lor |

ap 4
netaeo

: AD-A095 860 NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA F/6 1271
STATISTICS FOR PEAK VALUES OF MULTIPLE COHERENCE.(U)

SEP 80 D M KLAMER
UNCLASSIFIED NOSC/TR-628




NOSC TR 628

-

N FILE COPY

DA095 440

Technical Report 628

STATISTICS FOR PEAK VALUES OF
MULTIPLE COHERENCE

4 D.M. Klamer
—ee? 28 September 1980
Final Report: October 1979 - September 1980

Prepared for
Naval Electronic Systems Command

Approved for public release; distribution unlimited

8¢9 dl JSON

NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152

s81 2 25 a1




T O R e ey o

Frosc
ML 4

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND
HL BLOOD

Technical Director

SL GUILLE, CAPT, USN

Commander

ADMINISTRATIVE INFORMATION

This work was performed from 1 October 1979 to 30 September 1980,
under the sponsorship of NAVELEX 320. Funds were provided through Program
Element 62711N, subproject XF11-101-100.

Under authority of

H. A. Schenck, Head

Undersea Surveillance
Department

Released by

R. R. Smith, Head

Signal Processing and
Display Division

ACKNOWLEDGEMENTS

The author is indebted to A. Smotkin, Code 7134, Signal Processing and Display
Division, for programming assistance with the ROC curves associated with coherence, and
to G. Miller, New Professional on tour in Code 713, for programming the multiple coher-

ence results.

a T e
1T R ot ey,



( E)v D. M. Klamer _

| } - R ; .
] g}:{ I REIOR
9. PERFORMING ORGANIZ RAME AND ADDRESS 4~ — ——

FIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter: N&
A 4

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

2. GOVT ACCESSION NO.

NOSC Technical Report 628 (TR 628) Aj

/\QQS_ $/5C 3 mnr's CATALOG NUMBER

4. TITLE (and title)

=

’F'—_’—"_—M e e % e v ) ) 5. F REPORT & PERIOD COVERED
.{ _STATISTICS FOR PEAK VALUES OF MULTIPLE COHERENCE. A" Final Reperte Sy
s “Z x ’ 1 Se “8

L' L Octebewmid79

6. PERFORMING

7. AUTHOR(s)

8. CONTRACT O

]

[

-
,

4 -
-

Naval Ocean Systems Center
San Diego, CA 92152

10. pWeut PROJECT, TASK
AR K UNIT NUMBERS
I .
62711N’XF11 101 100

11. CONTROLLING OFFICE NAME AND ADDRESS , 17. REPORT DATE __ ;
Naval Electronic Systems Command | ' MSD'
Washington, D.C. 20360 wer”]13. NUMBER OF PaGES

33
4. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Oflice) 18. SECURITY CLASS. (of this report)
z Unclassified
=¥
T5a. DECL ASSIFICATION/ DOWNGRADING
SCHEOULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, if dif{terent from Report)

18. SUPPLEMENTARY NOTES

multiple coherence
magnitude-squared coherence (MSC)
receiver operating characteristic (ROC) curves

19. XEY WORDS (Continue on reverse side i{ necessary and tdentify by dlock number)

Neyman-Pearson hypotheses test

; ABSTRACT IComlnu’ on reverse alde if neceseary and identily by dlock number)
The objective of this work is to determine the performance of the maximum (or peak) of estimates of the

magnitude-squared coherence (MSC) on a passive ambiguity surface as a detection statistic.

The method chosen to measure the objective was the receiver operating characteristic (ROC) curves which plot
the probability of detection versus the false alarm rate. To obtain the ROC curves, the probability distribution
function of the maximum value of the MSC estimates for noise only, along with noise and signal present, are
developed. These probability distribution and density functions are then used to establish a Neyman-Pearson
hypotheses test for signal detection. The signal detection results are presented as ROC curves which depend on
the size of the surface over which the maximum is taken, the true coherence, and the number of degrees of free-

L__dom of the individual estimates of the MSC. These results are then extended to muitiple coherence.

DD , 5%, 1473  eoimion o 1 NOV ¢81s OBsOLETE
S /N 0102-L F.014.6601

JAN 73

\

UNCLASSIFIED —
SECURITY CLASSIFICATION OF THIS PAGE [Whon DuoE )

‘7.",(// -_—
- ./__-‘—_//

L

-t




T

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

e imS e e aa ea PP




‘ Accéstg?';ﬂ For i

!
oo

!
b

SUMMARY
OBIJECTIVE

The objective of this work is to determine the performance of the maximum (or peak)

of estimates of the magnitude-squared coherence (MSC) on a passive ambiguity surface as a
detection statistic.

RESULTS

The method chosen to measure the objective was the receiver operating characteristic
{ROC) curves which plot the probability of detection versus the false alarm rate. To obtain
the ROC curves, the probability distribution function of the maximum value of the MSC
estimates for noise only, along with noise and signal present, are developed. These probability
distribution and density functions are then used to establish a Neyman-Pearson hypotheses
test for signal detection. The signal detection results are presented as ROC curves which de-
pend on the size of the surface over which the maximum is taken, the true coherence, and the

number of degrees of freedom of the individual estimates of the MSC. These results are then
extended to multiple coherence.
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1. INTRODUCTION ]

The determination of the probability distribution and density functions of the maxi- !
mum (or peak) of estimates (of the magnitude-squared coherence) on a passive ambiguity
surface is the main focus of this report. This peak value of the estimate of the magnitude-

squared coherence (MSC) serves as a “*data reduction’™ aid in processing the information con- :
tained in the passive ambiguity surface (PAS). We obtain the probability distribution and ,
density functions in terms of the size of the surface over which the maximum is taken. the
true coherence. and the number of degrees of freedom of each individual MSC estimate. i
These probability distribution and density functions are then used to characterize the signal )

detection performance of the maximum MSC estimate.

In Section 2 we present a review and necessary background on the MSC estimate for
a single point on a PAS. The probability distribution function of the maximum value of the !
MSC estimates for noise only. along with noise and signal present, are developed in Section 3. .
These probability distribution and density functions are then used to establish a Neyman-
Pearson type hypotheses test for signal detection in Section 4. The signal detection results
are presented as ROC curves which depend on the size of the surface over which the maximum
is taken. the true coherence, and the number of degrees of freedom of the individual estimates.
In Section § we extend the results of Sections 3 and 4 to the case of the magnitude-squared
multiple coherence. Section 6 concludes with some final remarks regarding the relationships
between the parameters of the PAS and the detection performance.

2. BACKGROUND

Let X () and X-(t) be real. zero-mean Gaussian random processes which are jointly
wide-sense stationary. The correlation functions Rjk“) are defined by

. = X + < S
torj. k = 1. 2. and the associated power spectral densities ! ) are assumed to exist with

=)

¢jk“.’ = / Rjk(t)cxp(-i 2 £ty dt.

- 00

forj. k = 1. 2. The magnitude-squared coherence (MSC) function is defined as the magnitude-
squared of the cross-spectral density ¢ 4(1) divided by the product ot the power spectral
densities O l(t') LR ). 1.e.. the MSC tunction is defined by

5 lo,zml:

vt = 611N 65D (n




when ¢jj(ﬂ > 0. and by 0 otherwise. The MSC function 72( f) measures the proportion of the
power of Xl’ at frequency f, attributable to the linear regression of Xl on Xz [1].

An estimate of 72(f) is formed from N independent (i.e., no overlap) segments of
data given by

N
3 F R F, (k) (2)

SN |

N N
DR R Y F (1
k=1 k=1

where F(f; k) is the Fourier coefficient at the frequency f from the kth discrete Fourier
transform (DFT) sample of the process X;(t). We note that F, (f1k) is a complex Gaussian
random variable.

A passive ambiguity surface (PAS) is formed by compensating the MSC estimate for
a range of time delays and doppler shifts. Specifically, to account for a time delay of 7 and
a doppler correction of 8 radians, the estimate of the MSC becomes

N >
D F ik KO R (ko)
3 —
2 (f:r.0) = k=1 . (3)
N

Z (F](f:k)l2 Z le(f:k—‘r)l:
k=1 k=1

The passive ambiguity surface consists of a “‘grid’” of points over which the MSC estimate is
computed for Ay distinct values of time delay T = {T TA f and for A4 distinct values

of doppler © = { 0A } . Thus. the PAS contains a total of A=Ay * A4 points, each

of which is an estimate of the MSC. Also, the spacing of the time delays and doppler shifts
is assumed to give independent est\mates of the magnitude-squared coherence. Again we
note that Fy (fik) e -ikd and F‘\ (f; k-7) are both complex Gaussian random variables.

For the sake of completeness we review the distribution and density functions for
the estimate of the MSC v~ (7. 6) at a single point of the PAS. The frequency f is assumed
to be fixed. and thus. the dependency of y< (f: 7. 9) on f is suppressed. There are two cases
to consider:

(a) Signal absent. In this case the true value of the MSC is assumed to be zero.
The probability distribution function of (2) is given by [ 2]

bt b m ks




At

5 (x IN,y2=0) = 1-(1 - NI (4)
Y
for 0 < x < 1, and the probability density function is

£ (x IN,y2=0) = (N- 1) (1 -x)N-2 (5)
.

for 0 < x < 1, and N is the number of independent data segments. These follow from the
fact that the Fi (f: k) in (2) are complex Gaussian random variables [ 2].

(b) Signal present. In this case the true value of the MSC is assumed to be nonzero.
The distribution function of (2) for nonzero true coherence is

o2\N
F (xIN,y%) = x<——7—2)
Y 1 ~-xy

~

N-2 k

1-x 2
Z ( 2> SF =k 1 =-N:ilixy=) (6)

1 - xy
k=0

and the density function is

N 1-ON
£5 (X IN.Y2) = (N= D (1=93) (1-xN"2 (1 = xy?)
7

SF{(1=N.T=N:iLixy?) (7)
where 5F | (a. bic: Z) is the Gaussian hypergeometric function defined by [3]
= ¢
(a)Q (b)Q Z
zFl(a.b:c:Z)=Z o

(C)Q
=0

and (a)g is Pochhammer’s symbol (a)g =T (a + /T (a), i.e.,

1}

‘3’0 ]

(a)y = aa+ . (a+¥¢=-N, =12 ...

Note that when either a or b is a negative integer. then the yF; function is simply a poly-
nomial of finite degree. We also note that the distribution and density functions given in (4)

i
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through (7) remain valid for the estimate given in (3) since the Fourier coefficients are, as
noted after (3), complex Gaussian random variables.

3. DISTRIBUTION OF THE MAXIMUM

In this section we derive the distribution function of the maximum of the estimate
of the magnitude squared coherence on a passive ambiguity surface. The estimates 72 (1,0
are assumed to be independent of each other and the total size of the surface is assumed to
contain A points. Theorem | was o/ri\ginally obtained in [4].

Theorem 1. Let ZA = max {72 (r,8):7eT,0¢ G)} be the maximum over A inde-
pendent estimates of the (noise only) MSC where the true coherence is assumed to be zero
(v2 = 0) for all values of 7 € T and 0 € © over which the maximum is taken. Then, the
distribution function of Z 4 is given by

0. x <0,
FZn (xlA,N.72=0)=-exp[—A(l—x)N’]].O<x<l, (8)
Il. 1 <x,

and the density function is
iz, (X1A. Nyt =01 = AN= D1 =-xN2 exp [—A(l ~x)N“], (9)

for 0 < x <1, and 0 otherwise.

Proof. The set of estimates 3 73 (7. B)} are independent and identically distributed
with the common distribution function (4). By [35, p. 36]. Z p has a type 3 asymptotic
distribution given by (8) since 1 - F(x) behaves like 8 (xg - x)¥ with = 1. xg=1.and
a =N - |. That the density function is given by (9) follows immediately by differentiating
8). 0

We note that if the distribution function (8) for ZA is expanded into a Taylor
series, then the first two terms of the series expansion gives the approximation

FZA(xlA.N.73=O) >~ 1-A(1-xN!

which reduces to the distribution function of a single point (4) on the PAS for A= 1.
Figure 1 presents graphs of (5) and (9) for various values of A when the true coherence is

zero (i.e., noise only).
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Figure 1. Density functi ns fZA (x| AN, 72 =0) for Z, = max 72, the maxi-

mum of the estimates o the MSC with noise only present. (Surface size = A:
degrees of freedom = N: ‘rue MSC = y2,)

We now turn to the case when a signal is present, that is. when one estimate is
based on data with a true MSC of'y2 # 0 and all of the other estimates on the surface have
only noise present. Thus. one estimate of the MSC has a distribution function given by (6).
while the remaining A-1 estimates on the surface have a distribution function given by (4).
We now present

-3 .
Theorem 2. Let Zp = max % Y=-(1.0) :(1.8)e TX (-9} be the maximum over A

Py
independent estimates of ¥2 (1. 8) where one estimate is distributed according to (6) and
the remaining A-1 estimates are distributed according to (4). Then. the distribution
function of %A is

A\ N
5 -
Fz (xIAN.y™) = exp [—iA—I)(l—x)N']] X ——I—L,—
~A - xvy-
N-2
I -x k . A
—_— SF =k =NoToxyo). (10
| - xy~ -
k=0




for 0 < x < . Ine density function is given by

L2\ N
-¥- e/
t; (xiA.N.73)=(N-n<————7—,-> (1-x)N-2
~A [ - xy-

exXp [—¢A— l)(l—x)N‘l]g(l—xyz)“N AF 1 (1=N, 1-Ni1ixy7)

N-2 2
k
1 -x o)
+ (A-1)x AF =k 1-N:l:xy9) ) . (1
2 (o) o
k=0

for0<x < 1.
Proot. Let 7o and 00 be the location on the surface where the true coherence y-

i1s nonzero. Then

AN

max{yz('r.()) (1.0 eT X(—)}

1

N

max {72 (1990 - ZA—I}

1t

where

N

Za_) = max {72 (r.0): (1.0 e TXO\ ‘(T(y 00]} }

and TX O\ { (70, 90)} Is the set containing A - 1 points which excludes the point
(1g. 0gi. Thus the distribution function of L is given by

it
-
-
A
~
o

Fz (STAN.y™)
‘\«“\

1

3
PT{‘Y-‘TO' 00)<\ ZA—l g\}

= FYX N D F (x[A-1.N.v2=0)
73 | Y ZA—I X | Y

-~

Py
which tollows trom the fact that 73 (0 8 is independent of the other estimates
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{ 73 (1.0 (r1.MHeTXO\ {(TO.BO)}} . The distribution function F~5 (x | N, 73) is given
T . N A

by (4) and the distribution tunction FZA | (x | A-1,N.y2=0)is given by (8) of
Theorem 1. The theorem now follows. O

We note that when A = 1, the extreme value distribution function of Z = given in (10)
reduces to the distribution function of a single point (with a signal present) on the PAS as
given in (6). Plots of the density functions (9) for a signal present are given in Figures 2 and
3 for various surface sizes and different numbers of degrees of freedom. Note that as the maxi-
mum is taken over more estimates on the surface the density function **shifts’ to the right. as
would be expected. Also note that when Figure 2 is compared to Figure 3. the density functions
for an increased number of degrees of freedom N (Figure 3) have less *‘separation.” Compar-
ing Figures | and 2 shows the change between noise only and noise plus signal present.
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Figure 2. Density functions fZA (x| A, N. 72) for Z.A = max y-, the maximum

of the estimates of the MSC wben a signal is present. (Surface size = A: degrees
of freedom = N; true MSC = y-.)
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Figure 3. Density functions fZA (x| A.N, 72) for gA = max y~, the maximum

of the estimates of the MSC wl:en a signal is present. (Surface size = A; degrees
of freedom = N; true MSC = vy~.)

4. APPLICATIONS TO DETECTION STATISTICS

In this section we apply the results of Theorems | and 2 to the problem of signal de-
tection on a passive ambiguity surface using the maximum (or peak) value on the surface as
a detection statistic. We formulate a Neyman-Pearson hypotheses test and obtain expressions
for the probability of talse alarm and probability ot detection in terms of the number of
degrees of freedom N (i.c.. the number of indepe11de11£segn1ents of data), the size of the
passive ambiguity surface A, and the true coherence y-.

Let the observation of the maximum be

5
§a = nlux{‘y“(r.()):ir.O)e T X(-)}

that is. § 4 is the maximum value of the estimates of the MSC on a surface containing A points.
The hypothesis Hg of the Neyman-Pearson test is the case when no signal is present. which is
characterized by a true coherence ol"y2 = 0 for each estimate on a PAS ¢fsize A, Under HO

POV




the observation {4 = Z 5 is described by the density function (7) given in Theorem 1. The
hypothesis Hl is the case when a signal is present, i.e., the true coherence 7— is nonzero for
one particular pair of (1(), 8) and is zero for the other A-1 points on the surface. In this
case the observation { = gA and has the density function (9) of Theorem 2. Thus, the
hypotheses test is

Hy: ta = Za - PoX) = fz, (XIA.N.72=0) :

-
Hl Zg-A:ZA. pl(X)=fZ’A(X'A.N,')"¢O)

The probability of talse alarm and probability of detection are now readily calculated as

1

QO = pFA(xo) =/ pO(x)dx

X0
-
=1 ‘FZA(XolA,N.‘Y':O)
and

]

Qd = pp {xg! =f pl(xidx

X0

|
1-F7 (xglA.N.y=)
ZA 70 7

where the distribution tunctions FZA and FZA are given in (6) of Theorem 1 and. respectively,
in (8) of Theorem 2. We note that in Neyman-Pearson type detection the probability of false
alarm is set at some predetermined value. Solving tor the threshold xg in terms of the proba-
bility of false alarm QO gives

Vin-1)
x0=l—[(—l/A)Qn(]-QO)] m

For the sake of comparison we also determine the detection performance of the MSC estimate
for a single point [6] [7]. In this case the hypotheses are

- . 2
Hg : § = v-. po(x)=t;3(xlN,'y =0):
-3 a4
Hy o § =y~ PIO) = T (x IN.y= 200
9

[




where 3 (x | N, 'y2 = () is given by (5) and 1"72 (x [N, 73) is given by (7). The probability
of false alarm and probability of detection aré easily calculated as above.

The comparisons between the detection performance of the “peak’ (or maximum)
value of the estimates of the MSC on a PAS and a single estimate of the MSC are given in
Figures 4 through 6. In these figures receiver operating characteristic (ROC) curves depict
the detection performance. Figure 4 shows that the detection performance of the maximum
decreases as the size of the surface increases (with the degrees of freedom N and true coherence
73 both fixed). Figure 5 indicates the expected result that the probability of detection in-
creases as the true coherence increases. In Figure 6 the increase in the probability of detection
when the number of degrees of freedom also is increased is indicated. We note that in the
above figures the ROC curves for A = 1 can be obtained from [6].

Since the ROC curves presented in Figures 4 through 6 have a linear scale, the detec-
tion performance for small values of the probability of false alarm is difficult to determine.
Thus, in Figures 7 through 9 the probability of detection is plotted against 10 log{g (v2).
where y2 is the true coherence and the probability of false alarm is fixed. Figure 7 again
shows that the detection performance of the maximum degrades as the size of the surface
increases. In Figure 8 we see that increasing the probability of false alarm also increases the
probability of detection. Finally. the increase in the probability of detection as the number
of.degrees of freedom increases is indicated in Figure 9.

1.0r

PROB. DETECTION

PROB. FALSE ALARM

3~
Figure 4. ROC curves for the detection statistic { , = max v~. (Surface size = A;
b
degrees of freedom = N; true MSC = y-.)
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0.0 1.0
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- - - "* N -
Figure 5. ROC curve for the detection statistic §y = max ™. (Surface size = A
5 .
degrees of freedom = N; true MSC =y-)
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S. EXTENSION TO MULTIPLE COHERENCE

The estimate ot the magnitude-squared multiple coherence has also been considered
as a detection statistic { 7], In this section we present a briet review of multiple coherence
and derive the extreme value statistics of the maximum taken over estimates of the magni-
tude-squared multiple coherence. These results are then used 1o obtain the detection per-
formance of the estimate ot the magnitude-squared multiple coherence.

We let p designate the number of source channels receiving measurements. In
particular. the case of p = 2 reduces to the magnitude=squared coherence (MSC) studied in
Sections 2and 3. Let Xev = (X (0. .. X (7 be a real, zero mean, Gaussian vector ran-
dom process which is wide-sense stationary. The correlation matrix is defined by

Ry = [[l: Xj(wnxkcs)]] = [[Rjk‘”:u

where Rik(l) is the p by p matrix with clements Rjk(t). The assocuated power spectral
densities are assumed to exist with




o0
Oik”.’ = / Rik(l)c\p(—ilnl't)dt
oo

for 1 <2) k< p.oand ooty s the spectral density matrix

o = [[O“\‘”B

The magnitudesquared multiple coherence (MSMO) is defined in terms of the power spectral
density matrin ¢ oty and ats inverse é'lql'i where the elements 01'(3‘](1‘) are designated by

ol = [[o”‘(t)]] .

The \1851(';13' L2 i=lag+lop th

of the i*" channel is detined by

.: . Yy o= - A1 J 3 3
TR IR ph = - [o_umolm] (1)
torj= 1., p. Wenote that the MSMC can be obtained inductively in terms of the pairwise
complen coherence (not magnitudesquared coherencer as indicated in 18], We also note

hl hl . . .
that when p= 20 the MSMC M.t 1) (nr M3 ] ) reduces to the MSC 721 Oy detined in ¢y and

Al

“T-:”" =

|JIJ

lll) = 7

Al A
For notational comvenience we dc\lgnulc the MSMC asu=(or TN ) and suppress the de-
pendence on g p.and for, rc\pcctn'vl\
The MSMC estimuate u: H] is tormed trom an estimate of the spectral density matrix

biry = [[ ik”{“ and s imerse (& on -he o”‘ ﬂ The MSMC estimate s given by

/§ R A . ,\| R
TN [o”mcb-'m]
When asignal s absent, ve., the true MSMC s gero, the distnibution of the MSMC estimate
—

Al
u- s wven by [ 2]

i p N u- -y
u-

-1 p-2 -
LN 14 z: \'p’+\*| A (RN O ALY
p-2

(=0




and the density function is

3 I" (N) ) -
(X L u-=0) = P-2 (1 - x)N-P
I“Z(Mp.r\.p (o)} F(p-l)F(N-p+l)x (1-x) . (14)

For the case of 4 signal present, the distribution is given by [2] [9]

LN N o
- 2o p-flouT (p-_+K)
*@‘XWN‘#’ X <|_X“2> Z (p-2' k!
k=0
| k
<l —Xq> 3F](—k,p~l—N:p-l:xu2) (15

and the density function is

AN s
—umy xP - NP
t‘/k(xlrxN.u:):r(NHl uD x TUox) s— 2N-p+1
K- Cip-NDHT(N=-p+ (1l -xu).

SF (p-1-N.p-1=-Nip-1T:xu’) . (16)

The following two theorems for the magnitude-squared multiple coherence extend
Theorems 1 and 2:

Theorem 1. Let BZ A = max ﬁl (r.0):(t.HeTX 9} be the maximum over A
independent estimates of the MSMC and assume that the true multiple coherence for each
estimate is O (i.e.. ;12 =0). Then the distribution function of uZ 5 is

,
F#ZA(xlA.‘p.N.u =0)
0. N-1 x < 0.
= Jexp [—A< )(1-x)N‘P+' . 0<x<1 (17)

and the density function is




. )
tuZA(x A, p. N, u-=0)

/

N- I N-1

= A\ w)(N—pH)(l—x)N-p exp [—A( ,><1-x)N-P+‘] . (8
p-2 pP--

tor 0 < x < 1. und Q otherwise.
Proof. Asin Theorem 1. nZ 5 has a type 3 asymptotic distribution 5] since

) N- 1
1-F-3(x Ip.N.u==0) =< j)(l-x)N'pH+o[(l-x)N"p+1 ]
02

as x =~ . The theorem now follows trom the independence of the A estimates for the

MSMC. O
Again we note that Theorem 1 is a special case of Theorem 1" when p =2, We
now proceed to the case of a signal present in one of the estimates:
A
Theorem 2. Let “gA = max f y: (r.0): (1.0 eTX G)} be the maximum over A

independent estimates of the MSMC where one estimate is distributed according to (15)
and the remaining A-1 estimates are distributed according to (13). Then the distribution

function of “ZA is

—
F#ZAmlA.p.r\.n)

N-1 o2 \N
= exp|-(A-1) R (1-x)N-PHL L p-i ——-—i—,-
p-- 1 - xu~

N-p K

(p-2+k 1 -x
E (&—’)’k’ 3 ,F](-k.p~l—N:p:xy2) (19)
o p-c) K l".\'l.l“ -

tor 0 < x < 1. The density tunction is

. , c 2
f“Z’A(‘\IA.p.‘\./J )

\ , T AN
PNy xP2 1 - NP 1 ~p- N -1 Nen+1
= —— - 5 expl-(A-1 (1 -x)hP
Fip- TN -p+ 1 \7_ 2 po2

ik




(l-xuz)P"‘N 2Flfp—]-N.p—l-N:p— l:xuz)

N-p ‘
- -2+Kk) f 1~
+A= D x(1-x)P2 (ﬂpa_,),kk,’ < x..>
- . ]-X#-
k=0
X:F](—k.p-l-N:p—l‘.Xuz)} (20)

tor0<x<1.

Proof. Proceeding as in the proot of Theorem 2. we obtain

hl 2 Y
Fﬂg)\(x fA.p.N.u-) = Fﬁ(x lp.N.;i“)I-"uZA_l (X]A=-1L.p.Nu-=0

and the theorem now follows directly from (17) of Theorem 1" and (15). O

Plots of the density functions f,uZA (x | A, p.N. u: = 0) and f“ZA (x | A.p. N, uz)
are given in Figures 10 through 14, Figure 10 shows plots of the density function (18) when
only noise is present. (See Figure | for the case p=2.) In Figure 11, the effect of increasing
the number of source channels p is shown. The effect of increasing the surface size A is
shown in Figure 12: also, the effect of changing the number of source channels p is contrasted
between Figure 12a and 12b. The effect of changing the true multiple coherence u? is indi-
cated in Figure 13. Finally. Figure 14 indicates the result of changing the number of degrees
of freedom,

As in the case of the MSC estimates which form a passive ambiguity surface, Neyman-
Pearson type signal detection hypotheses can be formulated by using the maximum value of
the estimate of magnitude—squared multiple coherence as a detection statistic. In this case,
the measurement

(>
uﬁ‘A = max {/.l—(r.() : (T,O)ETX@}
has cither the distribution under Hg defined by
. . )
H() : IJ{/\ = #IJA . po(‘) = 1lJ~ZA (X I A, p‘N.“— =0)

or. under H 1 when a signal is present

_ hl
Hytpbp =y o pp(x) = 1“ZA(XIA.p,N.u").
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Figure 10. Density functions f“ZA (x| A.p. N, ;13 = Q) for uZA = max u?‘. the

maximum of the estimates of the MSMC with noise only present. (Surface size
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Figure 11, Density tunctions t:uZ:A (x| A.p. N, “2) for “Z,A' the maximum of

the estimates of the MSMC when a signal is present. (Surface size = A: degrees of
. . hl
freedom = N: number ot channels = p; true MSMC = u~.)
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Figure 12b. Density functions for uZ » . the maximum of the estimate of the
MSMC when a signal is present. (Surface’ size = A: degrees of freedom =N
number of channels = p; true MSMC = u~.)
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where fyz and fﬁZ,A are given by (18) and (20), respectively. The probability of false

alarm and probability of detection, for the maximum estimate of the MSMC, are given by

Qq = 1-Fuz, (5ol A0 Ny = 0)

Qq = 1-Fyz, (xol Ap. N

where F,uZA is given by (17) and F“Z,A is given by (19). The probabilities of false alarm and

detection for a single estimate of the MSMC are also easily calculated as

Qo = 1-Fr (xg | p.Nop==0)

Q= 1-Fryixql p.N. u7)

~

where F 5 and F‘ﬁ are given by (13), and respectively. (15).

The ROC curves for the peak value of the MSMC are presented in Figures 15
through 18. The curves for A = | can be obtained from [7]. In Figure 15 the effects of
increasing the number of source channels p is shown to decrease the probability of detec-
tion. (See the discussion in Section 6.) Also, the effects of increasing the number of estimates
A over which the maximum is taken, i.e., increasing the surface size. are again shown to de-
crease the probability of detection: this is clearly demonstrated in Figure 16. In Figure 15,
the effect of increasing the true multiple coherence u2 is shown to increase the probability
of detection. The eftect of increasing N (the number of degrees ot freedom) is shown in
Figure 16 to increase the probability of detection.

Figures 19 through 22 are graphs of the probability of detection versus 10 logg
(MSMC) when the probability of false alarm is fixed. Figure 19 shows that the effect of in-
creasing the number of source channels p results in a decrcase in the probability of detec-
tion (again, sce the discussion in Section 6). The effect of increasing the surface size A is
shown in Figure 20 — the probability of detection decreases. Figure 21 shows the expected
result that the probability of detection decreases as the probability of false alarm decreases.
Finally. we see in Figure 22 that increasing the number of degrees of freedom increases the
probability of detection.

We conclude by addressing the fact that the probability of detection decreases as
the number of source channels p increases under the assumption that the numerical value
of the multiple coherence remains fixed. This is, perhaps. ditficult to understand since the
basic definition of multiple coherence changes as the number of source channels changes.
As indicated in | 7], the signal-to-noise rotio (SNR) in the individual channels must decrease
in order that the “multiple coherence” stays constant when the number of source channels
increases (under the assumption of equal SNR in all channels). However, this is only a partial

explanation,




PROB. DETECTION

PROB. FALSE ALARM

Figure [5. ROC curygs for the magnitude-squared multiple coherence detection
statistic qu = max pz. (Surfjace size = A; degrees of freedom = N; number of
channels = p; true MSMC = =)

To better understand multiple coherence we compare the following two cases that
are based on the assumption that the SNR in the individual channels are equal. The equal '
SNR in each channel implies that the magnitude-squared multiple coherence (#p for p
channels) and SNR (denoted R) are related by [7]

,
2. (p- 1 R? .
Ho "I+ R (1 +(p-DR) ° (21

For case 1. let p=2and u‘:' =0.07 (= 'yz). From (21) we have that R = 0.359 (= SNR). For
case 2, let p = 3 and let the SNR be as de}emined above, R = 0.359. Thus the magnitude-
squared multiple coherence is equal to p§ = 0.11. We now compare case 1 where p = 2 and
u5 = 0.07 with case 2 where p= 3 and B3 = 0.11. The comparison is given in Figure 23, where
the expected result of an increase in the probability of detection occurs when the SNR in the
individual channels is held constant and the number of channels is increased.
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Figure 16. ROC curves for the magnitude-squared multiple coherence detection
statistic ”SLA = max u-, (Surﬁace size = A degrees of freedom = N; number of
channels = p: true MSMC = u~))
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Figure 17. ROC curves for the magnitude-squared multiple coherence detection
statistic ui‘A = max ue. (Surf)ace size = A degrees of freedom = N: number of
channels = p: true MSMC = u~ )
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Figure 18, ROC curves for the magnitude-squared multiple coherence detection
statistic pf 4 = max p=. (Surface size = A: degrees of freedom = N: number of

il
channels = p; true MSMC = u~.)
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Figure 9. Detection curves for the magnitude-squared multiple coherence de-
tection statistic "‘;A = max uy<. (Surface size = A; degrees of freedom = N;
probability of false alarm = Qq:number of channels = p.)
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Figure 20. Detection curves for the magnitude-squared multiple coherence de-
tection statistic uf , = max u=. (Surface size = A: degrees of freedom = N; prob-
ability of false alarm = QO: number of channels = p.)
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Figure 21. Detection curves for the magnitude-squared multiple coherence de-
tection statistic u{ , = max u=. (Surface size = A: degrees of freedom = N: prob-
ability of false alarm = Qq; number of channels = p.)

A.._.._-.




PROB. DETECTION

PROB. DETECTION

10 7
/
/
/
/
/
b3
64 = ——
f 1
)0 0.00
-
-
00 = | 1 |
-200 -16 0 -12.0 80 410 a0
10 LOG IMSO
baguge 22 l/)clmllnu curves tor the magmtude sguared mulbple coherence

ut LAY T (Suttace size Addegrees of treedom NOprobabihine ot tabse

dlarm - Q. number ot channels = poy

/ N 64

/ SNR 036
0 ?,ug 0.07 == == ——
2
o3 /.13 an
0.0 |
0.0 PROB. FALSE ALARM 10

Figure 23. ROC curves tor the magnitude-squared muttiple coherence detection
statistic p o = max p~ with constant signal-to-noise-ratio. (Surtace sive - AL
dggrccs of freedom = N: number of :‘I\unncls = pitrue MSC with eoual SNR =
M3 true MSMC with cqual SNR = 30




6. CONCLUSIONS

Ihe performance of the extremum (or peak) on g passive ambiguity surtace as a
detection statistic has been derived in Section 4 tor the case of magnitude-squared coherence
and. i Section S. tor the case of the magnitude-squared multiple coherence. The tollowing
convlusions, vahid for both cuses. can be drawn:

thy The probabihity of detection decreases as the size of the surtace increases. An
mtuitive explanation of this behavior is that_as the size of the surtuce is increased. more noise
s added ™ mto the obsenvation £y = Max = torom the case of multiple coherence,
uly - Min g1 This s g direct consequence of the assumption that a signal is present in
onhvone of the estimates while the other estintes are based on observations which contain
noise only - Thus mcreasing the surtace size A implies that only noisy data are incorporated
into the measurement and that no contribution ot signal information is made. As a conse-
quence. the surtace size should be chosen to be as small as possible but vet large enough to

cosure that the sienal s contimed within the surta e,

5
O The probabality o detection imcereases as the true coherence y= increases tor as

Al
the troe muottiple coherence g= mereasest. This s an expected result which holds true in the
case o asmele estimate as mdicated i |7

(3 Ehe probabiline of detecton increases as the number ot degrees ot treedom N

M. teases foras the number of discrete Fouarer transtorms averaged to obtain an estimate
e teasest  Aeaan this s an ovpected result which also haolds true tor the single estimate
fol 11

3 The probabihity ot detection imereases as the number ot source channels is

i teased ander the assumption that the signal-to-notse-ratio s the same i cach of the

md i il hannels On the othier Tund - the probability of detection decreases as the number

ol sotrce einneds s moreased under the assampbon that the multipte coherence s tived

.
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7. GLOSSARY

Magnitude-squared coherence
Magnitude-squared multiple coherence
Passive ambiguity surtuce

Receiver operating charactenstios
Signal-to-noise ratio

Pochhammer's symbol

Sige of the ambiguity surtuce

Gauss” hypergeometric function

The Fourier coefticient at the trequency t trom the kth
discrete Fourier transtorm (DETY of the process y ()
Distribution tanction ot the MSC estimate when the true

coherence is zero tsignal absent)y

Distribution function of the MSC estimate when the true

coherence Is nongero 1\I\L’HJI presentd

Distnibution tunction ot the mavimum over MSC estimates
when the true coherence is gero tsignal absent)

Distribution tunction of the masxmum over MSC estimates
when the true coherence s nongero (signal present)

Distribution tunction ot the MSMC estimate when the true

multiple coherence 1s gero taignal absent)

Distribution tanction of the MSMC estimate when the true
multiple coherence is nongero dsignal present)

Distribution tunction ot the mavimum over MSMC estimates
when the true coherence is zero taignal absent)

Distnibution tunction ot the maxvimum over MSMO estimates
when the true coherence s nongzero (signal present)

Magnitude-squared coherence cand its estimate

Magmitude-squared coherence corrected tor time delay and
doppler cand 1ts estimate)

Same as the above wath the frequency T osuppressed
Multiple coherence of channel 1 compared to the othet
p-1 channels

Mavimum over A estimates ot the MSMC when no signat

s present

3




p
. . A .

) A
gt gt

Maximum over A estimates of the MSMC when a signal is
present

The measurement over the maximum of A estimates of the
MSMC

The MSMC when the SNR is equal in all channels

Degrees of freedom (or the number ot independent samples)
in the MSC or MSMC estimate .

Number of channels

Cross-spectral density between channel j and channel k
(or auto-spectral density when j=k) and its estimate

Cross-spectral density matrix with elements ¢>jk(f) and its
estimate

Probability of detection

Probability of talse alarm

Cross-correlation function between channel j and channel
k tor auto-correlation tunction when j=k)
Cross-correlation matrix with elements Rijit)

Set of time delays at which MSC estimates are calculated
Set of doppler shifts at which MSC estimates are calculated
Data in channel i

T

Vector of data (). \'pit))

Maximum over A estimates of the MSC when no signal
I8 present

Maximum over A estimates of the MSC when a signal is
present

The measurement of the MSC

The measurement over the maximum of A estimates of
the MSC
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